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Abstract

Bifurcation analysis and nonlinear model predictive control were 
performed on drug addiction models. Rigorous proof showing the 
existence of bifurcation (branch) points is presented along with 
computational validation. It is also demonstrated (both numerically and 
analytically) that the presence of the branch points was instrumental 
in obtaining the Utopia solution when the multiobjective nonlinear 
model prediction calculations were performed. Bifurcation analysis 
was performed using the MATLAB software MATCONT while the multi-
objective nonlinear model predictive control was performed by using 
the optimization language PYOMO.
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Introduction

Mental health has become a significant focus for research-
ers and medical doctors in the last decade. Ironically, drug 
addiction is both cause and effect for the existence of mental 
health problems. People with mental health issues resort to drugs 
and drugs in turn lead to mental health problems. Additionally, 
drug addiction has led to a considerable amount of poverty and 
crime. It is therefore important to develop strategies to curb drug 
addiction. The problem of drug addiction has led to computational 
research to develop reliable techniques to be able to control drug 
addiction. This work aims to perform bifurcation analysis in con-
junction with Multiobjective Nonlinear Model Predictive Control 
(MNLMPC) calculations on models involving drug addiction. 
This paper is organized as follows. First, the background section 
with the literature review is presented. The bifurcation analy-
sis techniques and the multiobjective nonlinear model predictive 
control strategies are presented followed by a description of how 
the presence of singular points affects the MNLMPC calculations. 
Two drug addiction example problems where MNLMPC calcula-
tions are performed in conjunction with bifurcation analysis are 
presented. It is numerically demonstrated that the presence 
of bifurcation points in the drug addiction models enables the 
MNLMPC calculations to converge to the Utopia solution.

Background

Studied [1] the dynamics of tobacco addiction models. Per-
formed [2-4] dynamic and optimal control studies of drug ad-
diction models. Investigated [5] the effect of having drug reha-
bilitation centers to combat drug addiction. Developed [6,7] a 
mathematical analysis of some dynamic Models of drug addic-
tion, while [8] studied the dynamics of drug resistance. Mod-
eled [9,10] the dynamics of crystal meth abuse and heroin 
epidemics. Examined [11] the effect of recycling the recovered 
individuals back into the population while [12] studied the ef-
fect of drugs on global health. Studied [13] the effect of canna-
bis on mental health [14] investigated the use of strategies to, 
monitor alcohol and substance abuse. Studied [15-17] dynamic 
models involving illicit drug use. All the optimal control work 
done so far involves single objective minimization. In this work 
multiobjective nonlinear model predictive control calculations 
are performed on drug addiction models in conjunction with 
bifurcation analysis. It is numerically demonstrated for two 
probels involving drug addiction that the presence of bifurcation 
points enables the MNLMPC calculations to converge to the Uto-
pia solution. The bifurcation analysis and the MNLPMC methods 
will now be presented followed by an explanation as to why the 
presence of bifurcation points leads to the MNLMPC calcula-
tions converging to the Utopia solution.
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With  the bifurcation parameter. The matrix A can be 
written in a compact form as
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For both limit and branch points the matrix B must be singu- 

lar. For a limit point (LP) the n+1th component of the tangent 
vector 1nv +  = 0 and for a branch point (BP) the matrix T

A
v
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be singular., The function  should be zero 
for a Hopf bifurcation point.  indicates the bialternate prod-
uct while nI  is the n-square identity matrix. A detailed deri-
vation can be found in [20,21] and [22]. Used Matcont to [23] 
perform bifurcation analysis on chemical engineering problems.

MNLMPC (Multiobjective Nonlinear Model prediotive  
control) method

The multiobjective nonlinear model predictive control (MN-
LMPC) method was first proposed by [24] and used by [25]. This 
method is rigorous and it does not involve the use of weighting 
functions not does it impose additional parameters or addition-
al constraints on the problem unlike the weighted function or 
the epsilon correction method [26]. For a problem that is posed 
as

1 2min ( , ) ( , .... )
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The MNLMPC method first solves dynamic optimization 
problems independently minimizing/maximizing each  indi-
vidually. The minimization/maximization of ix  will lead to the 
values *

ix . Then the optimization problem that will be solved is
* 2min { }

( , ); ( , ) 0; ;

i i

L U L U

x x
dxsubject to F x u h x u x x x u u u
dt

−
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This will provide the control values for various times. The 
first obtained control value is implemented and the remaining 
discarded. This procedure is repeated until the implemented 
and the first obtained control value are the same.

The optimization package in Python, Pyomo [27] where the 
differential equations are automatically converted to a Nonlinear 

(3)

(4)

(5)

(6)

Program (NLP) using the orthogonal collocation method [28] is 
commonly used for these calculations. The state of the art solv-
ers like IPOPT [29] and BARON [30] are normally used in con-
junction with PYOMO.

 Effect of singularities (Limit Point (LP) and Branch Point 
(BP)) on MNLMPC

Let the minimization be of the variables l result in the values  

1M  and 2M  . This The multiobjective objective function to be 
minimized will be

2 2
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The Euler Lagrange equation (also known as costate equa-
tions will be

( )i
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iλ  is the lagrangian multiplier. Taking the derivative of the 
objective function we get 
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At the Utopia point both 1 1( )p M−  and 2 2( )p M−  are 
zero. Hence  
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The co-state equation in optimal control is 
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iλ  is the lagrangian multiplier. The first term in this equa-
tion is 0 and hence 
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If the set of ODE ( , )dx g x u

dt
=  has a limit or a branch point, 

xg  is singular. 

This implies that there are two different vectors-values for 
[ ]iλ  where ( ) 0i

d
dt

λ >  and ( ) 0i
d
dt

λ < . In between there is a vector 
[ ]iλ  where ( ) 0i

d
dt

λ =  . This coupled with the boundary condition 
( ) 0i ftλ =  will lead to [ ] 0iλ =  which will make the problem an 

unconstrained optimization problem. The only solution for the 
unconstrained problem is the Utopia solution.

Results and discussion

In this section, the results of bifurcation analysis and MNLMPC 
calculations for two problems involving drug addiction are pre-
sented. The models used are described in Islam et al (2020) and 
Mushayabasa et al (2015b). The equations for each problem 
are presented followed by the bifurcation analysis and MN-
LMPC results.

Problem 1:  Islam et al (2020 Equations representing Problem 
1)

•	
( )aS t  represents individuals who are not drug users, but 

at a high risk of taking drugs

(1)

(2)

(3)

(4)

(5)

(6)

Bifurcation analysis

The existence of multiple steady-states (caused by limit and 
branch point singularities) and oscillatory behavior caused by 
Hopf bifurcation points) in chemical processes has led to a lot 
of computational work to explain the causes of these nonlinear 
phenomena. N MATCONT, [18,19] is a commonly used software 
to find limit points, branch points, and Hopf bifurcation points. 
Consider an ODE system
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•	 L(t) represents light drug users

•	 H(t) represents heavy drug users 

•	  ( )vR t  represents drug users under treatment in rehabili-
tation

•	 Q(t) represents individuals who will never take drugs

The equations are

1

2

3

1 2 3

a
a a a

a

a

a

a

dS r S H S u S
dt

dL S H L L L u L
dt
dH L H H p R u H
dt

dRv H R R p R
dt

dQ R Q u S u L u H
dt

α µ

α µ β δ

β µ γ

γ µ θ

θ µ

= − − −

= − − − −

= − − + −

= − − −

= − + + +

The model parameters are

1 2 3, ,u u u  are the control variables

Where 

•	 r  represents the recruitment rate of the population

•	 µ  is the natural mortality rate

•	 α  is the interaction rate among the susceptible and 
light drug users

•	 β  is the effective rate at which light users convert into 
heavy drug users

•	 δ  the removal rate from addiction without treatment

•	 γ  is the rate at which heavy addicts are being sent to 
rehabilitation for treatment

•	 1u  is the awareness and educational programs

•	 2u  is the family based care

•	 3u  represents the effectiveness of rehabilitation centers

Bifurcation analysis for problem 1

When bifurcation analysis with  being the bifurcation pa-
rameter was performed on the equations representing problem 
1, a branch point was found at [ , , , , , ]a vS L H R Q µ  values of 
(782.26, 0.0, 0, 0,0, 0.005433 ). Fig. 1a shows the bifurcation 
diagram with this branch point. 

MLNMPC for problem 1

For the MNLMPC of problem 1, ( )Q t∑ was maximized and 
resulted in a value of 2000; while ( )H t∑  was minimized and 
resulted in a value of 0. The multiobjective optimal control prob-
lem involved the minimization of 2 2( ( ) 2000) ( ( ) 0)Q t H t− + −∑ ∑  
subject to the dynamic equation set representing this problem . 
This resulted in the Utopia point of 0 and the MNLMPC values of 
the the control variables obtained were 1 2 3[ , , ]u u u  =[0.0004, 
0.0405, 0.5362]. The MNLMPC profiles are shown in figures 1a-
1i.

(7)

Problem 2 Mushayabasa et al (2015b)

Equations representing Problem 2

In this problem, the time-dependent variables are

•	 Sv (t) susceptible individuals

•	 I (t) light or occasional drug users

•	 Iav (t) heavy drug users

•	 Mv (t) mentally ill population and (individuals who suffer 
mental illness due to drug use,

•	 Rv (t) detected illicit drug users

The equations that represent the drug addiction problem are

(1 )

(1 ) ( )

( )

( )

( ) ( )

( )

v
c v v

v
c v c v

av
v c av

v
v av c v

v
c av v v

v av

dS u S S
dt

dI u S v I
dt
dI I v d I
dt

dM I I v M
dt

dR v I I M R
dt

I kI

µ λ µ

λ α γ σ µ ψ

α ρ φ µ

σ φ µ ε δ

γ ρ ε µ ω

λ β

= − − −

= − − + + + +

= − + + +

= + − + +

= + + − +

= +

(8)

and the parameter values are

0.3;  0.02;  1.25;  0.35;  0.1;
0.35;  0.6;  0.01;  0.035;  0.14;  0.2;
0.05;  0.09;

 

k
d

ω µ β γ
ρ ε α ψ δ
σ ϕ

= = = = =
= = = = = =
= =

 ,c cu v  are the control variables

Here, 

•	 α  represents the rate at which light drug users become 
heavy drug users 

•	 , ,γ ε ρ  the rates of detection and rehabilitation of indi-
viduals in classes , ,v v avI M I  

•	  ,σ φ the rates at which light and heavy illicit drug users 
develop mental illness

•	 ,dψ  the permanent exit rates of light and heavy users

•	 δ  mentally ill individuals who permanently exit the mod-
el because of death

•	 ω  the rate at which individuals recover as a result of re-
habilitation

•	 β  the strength of interactions between susceptible indi-
viduals and illicit drug users

•	 cu  represents the reduction of the intensity of “social in-
fluence” 

•	 cv  models the effort on the detection of illicit drug users

Bifurcation analysis for Problem 2

When bifurcation analysis with α  as the bifurcation param-
eter was performed on the equations representing problem 2, 
a branch point was found at[ , , , , , ]v v av v vS I I M R α  = [ 1.0, 
0.0, 0.0, 0.0, 0.0, 0.430112]. The bifurcation diagram is shown 
in Figure 2a. 
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MLNMPC for problem 2

For the MNLMPC of problem 2, ( )vI t∑  and ( )avI t∑  were 
minimized individually and both the minimizations resulted in a 
value of 0. The multiobjective optimal control problem involved 
the minimization of 2 2( ( )) ( ( ))v avI t I t+∑ ∑  subject to the dy-
namic equation set representing this problem. This resulted in 
the Utopia point of 0 and hte MNLMPC values of the the control 
variables obtained were 1 2 3[ , , ]u u u  =[0.0004, 0.0405, 0.5362]. 
The various MNLMPC profiles are shown in Figures 2b-2h.

Two problems involving drug addiction models have been 
shown to exhibit branch points leading to two different solution 
branches. In both cases, it is computationally shown that the 
MNLMPC calculations would converge to the Utopia solution as 
the theoretical analysis predicts.

Figure 1

Figure 2

1a 1b

1c 1d

1e 1f

1g 1h

1i

1a

1b

1c

1d

1e

1f

1g

1h
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Conclusions and future work

Branch points leading to two separate branches were exhibited 
when bifurcation analysis was performed on the two drug addic-
tion models considered in this paper. Rigorous analysis demon-
strated that the presence of the branch points would result in the 
MNLMPC calculations. This fact was also computationally validat-
ed. Future work would involve using drug addiction models with 
time delay.

Data availability statement: All data used is presented in the 
paper.
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